Defense mechanism against bacteria and fungi deciphered
Defense mechanism against bacteria and fungi deciphered
Mystery of ‘inactive’ defensin solved
Surprisingly, while almost all proteins are active only in their folded form, in the case of the small defensin the opposite is true. To activate the beta-defensin 1 the thioredoxin opens the three disulphide bridges that hold the molecule together. The molecule then opens up into the active state. Using this mechanism the body has the opportunity to selectively activate the defensin.
From the January 21, 2011 Eureka news alert
Under standard laboratory conditions, the human beta-defensin 1 (hBD-1), a human antibiotic naturally produced in the body, had always shown only little activity against microbes. Nevertheless the human body produces it in remarkable quantities. The solution to the puzzle was the investigation process itself, as the research group led by Dr. Jan Wehkamp at the Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology of the Stuttgart-based Robert Bosch Hospital found out.
Before the research group took a new approach to this research, defensins were usually tested in the presence of oxygen, although little oxygen is present, for example, in the human intestine. Starting out from the discovery that a special antibiotic-activating protein of the human body is diminished in patients with inflammatory bowel diseases, Crohn’s Disease and Ulcerative Colitis, the working group investigated how defensins act under low-oxygen conditions. During their investigations the scientists found out that under these conditions hBD-1 unfolds a strong antibiotic activity against lactic acid bacteria and yeast.
Furthermore the researchers discovered that another human protein, thioredoxin, is able to activate beta-defensin 1 even in the presence of oxygen. Moritz Marcinowski and Professor Johannes Buchner from the Department of Chemistry at the Technical University of Munich, used circular dichroism spectroscopy to elucidate the differences between the folded inactive and the unfolded active form of the protein.
Surprisingly, while almost all proteins are active only in their folded form, in the case of the small defensin the opposite is true. To activate the beta-defensin 1 the thioredoxin opens the three disulphide bridges that hold the molecule together. The molecule then opens up into the active state. Using this mechanism the body has the opportunity to selectively activate the defensin.
So far the cause of inflammatory bowel disease is unclear. Genetic as well as environmental factors seem to play a role, finally leading to a weakening of the antimicrobial barrier, which is mainly mediated by defensins. Accordingly the identified mechanism might contribute to the development of new therapies to treat affected patients.
Mindfulness meditation training changes brain structure in 8 weeks
Mindfulness meditation training changes brain structure in 8 weeks
From the January 3, 2011 Eureka news alert
Mindfulness meditation training changes brain structure in 8 weeks
Mass. General-led study shows changes over time in areas associated with awareness, empathy, stress
Participating in an 8-week mindfulness meditation program appears to make measurable changes in brain regions associated with memory, sense of self, empathy and stress. In a study that will appear in the January 30 issue of Psychiatry Research: Neuroimaging, a team led by Massachusetts General Hospital (MGH) researchers report the results of their study, the first to document meditation-produced changes over time in the brain’s grey matter.
“Although the practice of meditation is associated with a sense of peacefulness and physical relaxation, practitioners have long claimed that meditation also provides cognitive and psychological benefits that persist throughout the day,” says Sara Lazar, PhD, of the MGH Psychiatric Neuroimaging Research Program, the study’s senior author. “This study demonstrates that changes in brain structure may underlie some of these reported improvements and that people are not just feeling better because they are spending time relaxing.”
Previous studies from Lazar’s group and others found structural differences between the brains of experienced mediation practitioners and individuals with no history of meditation, observing thickening of the cerebral cortex in areas associated with attention and emotional integration. But those investigations could not document that those differences were actually produced by meditation.
For the current study, MR images were take of the brain structure of 16 study participants two weeks before and after they took part in the 8-week Mindfulness-Based Stress Reduction (MBSR) Program at the University of Massachusetts Center for Mindfulness. In addition to weekly meetings that included practice of mindfulness meditation – which focuses on nonjudgmental awareness of sensations, feelings and state of mind – participants received audio recordings for guided meditation practice and were asked to keep track of how much time they practiced each day. A set of MR brain images were also taken of a control group of non-meditators over a similar time interval.
Meditation group participants reported spending an average of 27 minutes each day practicing mindfulness exercises, and their responses to a mindfulness questionnaire indicated significant improvements compared with pre-participation responses. The analysis of MR images, which focused on areas where meditation-associated differences were seen in earlier studies, found increased grey-matter density in the hippocampus, known to be important for learning and memory, and in structures associated with self-awareness, compassion and introspection. Participant-reported reductions in stress also were correlated with decreased grey-matter density in the amygdala, which is known to play an important role in anxiety and stress. Although no change was seen in a self-awareness-associated structure called the insula, which had been identified in earlier studies, the authors suggest that longer-term meditation practice might be needed to produce changes in that area. None of these changes were seen in the control group, indicating that they had not resulted merely from the passage of time.
“It is fascinating to see the brain’s plasticity and that, by practicing meditation, we can play an active role in changing the brain and can increase our well-being and quality of life.” says Britta Hölzel, PhD, first author of the paper and a research fellow at MGH and Giessen University in Germany. “Other studies in different patient populations have shown that meditation can make significant improvements in a variety of symptoms, and we are now investigating the underlying mechanisms in the brain that facilitate this change.”
Amishi Jha, PhD, a University of Miami neuroscientist who investigates mindfulness-training’s effects on individuals in high-stress situations, says, “These results shed light on the mechanisms of action of mindfulness-based training. They demonstrate that the first-person experience of stress can not only be reduced with an 8-week mindfulness training program but that this experiential change corresponds with structural changes in the amydala, a finding that opens doors to many possibilities for further research on MBSR’s potential to protect against stress-related disorders, such as post-traumatic stress disorder.” Jha was not one of the studies investigators.
Genetic sequencing alone doesn’t offer a true picture of human disease
Genetic sequencing alone doesn’t offer a true picture of human disease
From the January 23 Eureka news alert
DURHAM, N.C. – Despite what you might have heard, genetic sequencing alone is not enough to understand human disease. Researchers at Duke University Medical Center have shown that functional tests are absolutely necessary to understand the biological relevance of the results of sequencing studies as they relate to disease, using a suite of diseases known as the ciliopathies which can cause patients to have many different traits.
“Right now the paradigm is to sequence a number of patients and see what may be there in terms of variants,” said Nicholas Katsanis, Ph.D. “The key finding of this study says that this approach is important, but not sufficient. If you really want to be able to penetrate, you must have a robust way to test the functional relevance of mutations you find in patients. For a person at risk of type 2 diabetes, schizophrenia or atherosclerosis, getting their genome sequenced is not enough – you have to functionally interpret the data to get a sense of what might happen to the particular patient.”
“This is the message to people doing medical genomics,” said lead author Erica Davis, Ph.D., Assistant Professor in the Duke Department of Pediatrics, who works in the Duke Center for Human Disease Modeling. “We have to know the extent to which gene variants in question are detrimental – how do they affect individual cells or organs and what is the result on human development or disease? Every patient has his or her own set of genetic variants, and most of these will not be found at sufficient frequency in the general population so that anyone could make a clear medical statement about their case.”
Davis, working in the lab of Katsanis, and in collaboration with many ciliopathy labs worldwide, sequenced a gene, TTC21B, known to be a critical component of the primary cilium, an antenna-like projection critical to cell function.
While a few of the mutations could readily be shown to cause two main human disorders, a kidney disease and an asphyxiating thoracic condition, the significance of the majority of DNA variants could not be determined. Davis then tested these variants in a zebrafish model, in which many genes are similar to humans, and showed that TTC21B appears to contribute disease-related mutations to about 5 percent of human ciliopathy cases.
The study, which appears in Nature Genetics online on Jan. 23, shows how genetic variations both can cause ciliopathies and also interact with other disease-causing genes to yield very different sets of patient problems.
Katsanis, the Jean and George Brumley Jr., M.D., Professor of Pediatrics and Cell Biology, and Director of the Duke Center for Human Disease Modeling, is a world expert in ciliopathies such as Bardet-Biedl Syndrome, in which the primary cilium of cells is abnormal and leads to a host of problems. About one child in 1,000 live births will have a ciliopathy, an incidence that is in the range of Down’s syndrome, said Katsanis.
“By sequencing genes to identify genetic variation, followed by functional studies with a good experimental model, we can get a much better idea of the architecture of complex, inherited disorders,” Katsanis said. “Each individual with a disease is unique,” Davis said. “If you can overlay gene sequencing with functional information, then you will be able to increase the fidelity of your findings and it will become more meaningful for patients and families.”
It will take more laboratories doing more pointed studies like this one to get a fuller picture of the ciliopathies and other diseases, Davis said.
Katsanis noted that it will take true collaboration within many scientific disciplines as well as scientific finesse to get at the true roots of complex diseases.
“Brute force alone – sequencing – will not help,” he said. “Technology is of finite resolution. You must have synthesis of physiology, cell biology, biochemistry and other fields to get true penetration into medically relevant information.”