Health and Medical News and Resources

General interest items edited by Janice Flahiff

[Press release] How important is long-distance travel in the spread of epidemics?

How important is long-distance travel in the spread of epidemics?.

Three scenarios depicting the simulated spread of a simple epidemic from a single point outbreak. Long-range jumps — mimicking air travel, for example — lead to sub-outbreaks. If long-distance jumps are rare, the main outbreak will quickly merge with the satellite outbreaks, leading to a rippling, wave-like growth (left). As the likelihood of long-distance jumps increases, the epidemic spread exhibits a super-linear power-law growth (center) or a stretched exponential or “metastatic” growth. (Simulations by Oskar Hallatschek, UC Berkeley, and Daniel Fisher, Stanford. Video editing by Christian Collins.)

From the 4 November 2014 UC Berkely press release

Robert Sanders, Media Relations

BERKELEY —

The current Ebola outbreak shows how quickly diseases can spread with global jet travel.

Yet knowing how to predict the spread of these epidemics is still uncertain, because the complicated models used are not fully understood, says a UC Berkeley biophysicist.

Using a very simple model of disease spread, Oskar Hallatschek, assistant professor of physics, proved that one common assumption is actually wrong. Most models have taken for granted that if disease vectors, such as humans, have any chance of “jumping” outside the initial outbreak area – by plane or train, for example – the outbreak quickly metastasizes into an epidemic.

Hallatschek and co-author Daniel Fisher of Stanford University found instead that if the chance of long-distance dispersal is low enough, the disease spreads quite slowly, like a wave rippling out from the initial outbreak. This type of spread was common centuries ago when humans rarely traveled. The Black Death spread through 14th-century Europe as a wave, for example.

But if the chance of jumping is above a threshold level – which is often the situation today with frequent air travel –the diseases can generate enough satellite outbreaks to spread like wildfire. And the greater the chance that people can hop around the globe, the faster the spread.

“With our simple model, we clearly show that one of the key factors that controls the spread of infection is how common long-range jumps are in the dispersal of a disease,” said Hallatschek, who is the William H. McAdams Chair in physics and a member of the UC Berkeley arm of the California Institute for Quantitative Biosciences (QB3). “And what matters most are the rare cases of extremely long jumps, the individuals who take plane trips to distant places and potentially spread the disease.”

Advertisements

November 9, 2014 - Posted by | Public Health | , , ,

No comments yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: