The Future Of Food: Algae, Insects and Lab-Grown Meat?
From the 3 February 2012 post at Art of the STEM – Science Art Culture Cohabitate
How can we feed the 2.5 billion more people – an extra China and India – likely to be alive in 2050? The UN says we will have to nearly double our food production and governments say we should adopt new technologies and avoid waste, but however you cut it, there are already one billion chronically hungry people, there’s little more virgin land to open up, climate change will only make farming harder to grow food in most places, the oceans are overfished, and much of the world faces growing water shortages.
Fifty years ago, when the world’s population was around half what it is now, the answer to looming famines was “the green revolution” – a massive increase in the use of hybrid seeds and chemical fertilisers. It worked, but at a great ecological price. We grow nearly twice as much food as we did just a generation ago, but we use three times as much water from rivers and underground supplies.
Food, farm and water technologists will have to find new ways to grow more crops in places that until now were hard or impossible to farm. It may need a total rethink over how we use land and water. So enter a new generation of radical farmers, novel foods and bright ideas…….
Related articles
- Can Algae Feed the World and Fuel the Planet? A Q&A with Craig Venter (scientificamerican.com)
- Environmental Benefits of lab-grown meat and genetically engineered fish (nextbigfuture.com)
- The future of food (foodsecuritysm.wordpress.com)
- Alternative Foods in Famines, by ShepherdFarmerGeek (survivalblog.com)
- Lab-Grown Meat: Food of the Future (foodservicewarehouse.com)
- Another helping of grasshopper? (msnbc.msn.com)
The green machine: Algae clean wastewater, convert to biodiesel
The green machine: Algae clean wastewater, convert to biodiesel
Professor Jeff Lodge and graduate student Eric Lannan explore algae as a biodiesel fuel.
RIT researchers take algae out of the lab
Let algae do the dirty work.
Researchers at Rochester Institute of Technology are developing biodiesel from microalgae grown in wastewater. The project is doubly “green” because algae consume nitrates and phosphates and reduce bacteria and toxins in the water. The end result: clean wastewater and stock for a promising biofuel.
The purified wastewater can be channeled back into receiving bodies of water at treatment plants, while the biodiesel can fuel buses, construction vehicles and farm equipment. Algae could replace diesel’s telltale black puffs of exhaust with cleaner emissions low in the sulfur and particulates that accompany fossil fuels.
Algae have a lot of advantages. They are cheaper and faster to grow than corn, which requires nutrient-rich soil, fertilizer and insecticide. Factor in the fuel used to harvest and transport corn and ethanol starts to look complicated.
In contrast, algae are much simpler organisms. They use photosynthesis to convert sunlight into energy. They need only water—ponds or tanks to grow in—sunlight and carbon dioxide.
“Algae—as a renewable feedstock—grow a lot quicker than crops of corn or soybeans,” says Eric Lannan, who is working on his master’s degree in mechanical engineering at RIT. “We can start a new batch of algae about every seven days. It’s a more continuous source that could offset 50 percent of our total gas use for equipment that uses diesel.”
Cold weather is an issue for biodiesel fuels.
“The one big drawback is that biodiesel does freeze at a higher temperature,” says Jeff Lodge, associate professor of biological sciences at RIT. “It doesn’t matter what kind of diesel fuel you have, if it gets too cold, the engine’s not starting. It gels up. It’s possible to blend various types of biodiesel—algae derived with soybeans or some other type—to generate a biodiesel with a more favorable pour point that flows easily.”
Lannan’s graduate research in biofuels led him to Lodge’s biology lab. With the help of chemistry major Emily Young, they isolated and extracted valuable fats, or lipids, algae produce and yielded tiny amounts of a golden-colored biodiesel. They are growing the alga strain Scenedesmus, a single-cell organism, using wastewater from the Frank E. Van Lare Wastewater Treatment Plant in Irondequoit, N.Y.
“It’s key to what we’re doing here,” Lodge says. “Algae will take out all the ammonia—99 percent—88 percent of the nitrate and 99 percent of the phosphate from the wastewater — all those nutrients you worry about dumping into the receiving water. In three to five days, pathogens are gone. We’ve got data to show that the coliform counts are dramatically reduced below the level that’s allowed to go out into Lake Ontario.”
Lodge and Lannan ramped up their algae production from 30 gallons of wastewater in a lab at RIT to 100 gallons in a 4-foot-by-7-foot long tank at Environmental Energy Technologies, an RIT spinoff. Lannan’s graduate thesis advisor Ali Ogut, professor of mechanical engineering, is the company’s president and CTO. In the spring, the researchers will build a mobile greenhouse at the Irondequoit wastewater treatment plant and scale up production to as much as 1,000 gallons of wastewater.
Northern Biodiesel, located in Wayne County, will purify the lipids from the algae and convert them into biodiesel for the RIT researchers.