Health and Medical News and Resources

General interest items edited by Janice Flahiff

[News release] Closer than ever to a personalized treatment solution for intellectual disability — ScienceDaily

Closer than ever to a personalized treatment solution for intellectual disability 

From the press release

JUPITER, FL – January 21, 2015 – Scientists from the Florida campus of The Scripps Research Institute (TSRI) have produced an approach that protects animal models against a type of genetic disruption that causes intellectual disability, including serious memory impairments and altered anxiety levels.

The findings, which focus on treating the effects of mutations to a gene known as Syngap1, have been published online ahead of print by the journal Biological Psychiatry.

“Our hope is that these studies will eventually lead to a therapy specifically designed for patients with psychiatric disorders caused by damagingSyngap1 mutations,” said Gavin Rumbaugh, a TSRI associate professor who led the study. “Our model shows that the early developmental period is the critical time to treat this type of genetic disorder.”

Damaging mutations in Syngap1 that reduce the number of functional proteins are one of the most common causes of sporadic intellectual disability and are associated with schizophrenia and autism spectrum disorder. Early estimates suggest that these non-inherited genetic mutations account for two to eight percent of these intellectual disability cases. Sporadic intellectual disability affects approximately one percent of the worldwide population, suggesting that tens of thousands of individuals with intellectual disability may carry damaging Syngap1 mutations without knowing it.

In the new study, the researchers examined the effect of damagingSyngap1 mutations during development and found that the mutations disrupt a critical period of neuronal growth—a period between the first and third postnatal weeks in mouse models. “We found that a certain type of cortical neuron grows too quickly in early development, which then leads to the premature formation of certain types of neural circuits,” said Research Associate Massimilano Aceti, first author of the study.

The researchers reasoned that this process might cause permanent errors in brain connectivity and that they might be able to head off these effects by enhancing the Syngap1 protein in the newborn mutant mice. Indeed, they found that a subset of neurons were misconnected in the adult mutant mice, suggesting that early growth of neurons can lead to life-long neural circuit connectivity problems. Then, using advanced genetic techniques to raise Syngap1 protein levels in newborn mutant mice, the researchers found this strategy completely protected the mice only when the approach was started before this critical developmental window opened.

As a result of these studies, Rumbaugh and his colleagues are now developing a drug-screening program to look for drug-like compounds that could restore levels of Syngap1 protein in defective neurons. They hope that, as personalized medicine advances, such a therapy could ultimately be tailored to patients based on their genotype.

In addition to Rumbaugh and Aceti, other authors of the study, “Syngap1 Haploinsufficiency Damages a Postnatal Critical Period of Pyramidal Cell Structural Maturation Linked to Cortical Circuit Assembly,” include Thomas K. Creson, Thomas Vaissiere, Camilo Rojas, Wen-Chin Huang, Ya-Xian Wang, Ronald S. Petralia, Damon T. Page and Courtney A. Miller of TSRI. For more information, seehttp://www.biologicalpsychiatryjournal.com/article/S0006-3223%2814%2900593-9/abstract

January 23, 2015 Posted by | Psychiatry | , , , , , , | Leave a comment

No Link Between Prenatal Mercury Exposure and Autism-Like Behaviors Found

Subject: Quinn, a boy with autism, and the lin...

Subject: Quinn, a boy with autism, and the line of toys he made before falling asleep See more about Quinn at: http://www.youtube.com/watch?v=G7kHSOgauhg Date: Circa 2003 Place: Walnut Creek, California Photographer: Andwhatsnext Original digital photograph (cropped and resized) Credit: Copyright (c) 2003 by Nancy J Price (aka Mom) (Photo credit: Wikipedia)

 

From the 23 July 2013 article at Science News Daily

 

The potential impact of exposure to low levels of mercury on the developing brain — specifically by women consuming fish during pregnancy — has long been the source of concern and some have argued that the chemical may be responsible for behavioral disorders such as autism. However, a new study that draws upon more than 30 years of research in the Republic of Seychelles reports that there is no association between pre-natal mercury exposure and autism-like behaviors.

 

Read the entire article here

 

 

July 24, 2013 Posted by | Consumer Health, Nutrition | , , , , , , | 1 Comment

   

%d bloggers like this: