Health and Medical News and Resources

General interest items edited by Janice Flahiff

[Press release] New nanodevice defeats drug resistance

New nanodevice defeats drug resistance 

From the 3 March 2015 MIT press release

Tiny particles embedded in gel can turn off drug-resistance genes, then release cancer drugs.

Chemotherapy often shrinks tumors at first, but as cancer cells become resistant to drug treatment, tumors can grow back. A new nanodevice developed by MIT researchers can help overcome that by first blocking the gene that confers drug resistance, then launching a new chemotherapy attack against the disarmed tumors.

The device, which consists of gold nanoparticles embedded in a hydrogel that can be injected or implanted at a tumor site, could also be used more broadly to disrupt any gene involved in cancer.

“You can target any genetic marker and deliver a drug, including those that don’t necessarily involve drug-resistance pathways. It’s a universal platform for dual therapy,” says Natalie Artzi, a research scientist at MIT’s Institute for Medical Engineering and Science (IMES), an assistant professor at Harvard Medical School, and senior author of a paper describing the device in the Proceedings of the National Academy of Sciences the week of March 2.

,,,

 

March 7, 2015 Posted by | Medical and Health Research News | , , , , , , | Leave a comment

[Repost] Database of Disease Genes Shows Potential Drug Therapies

From the 10 October 2013 article at newswise 

            [From the  article abstract – The Drug-Gene Interaction database (DGIdb) mines existing resources that generate hypotheses about how mutated genes might be targeted therapeutically or prioritized for drug development. It provides an interface for searching lists of genes against a compendium of drug-gene interactions and potentially ‘druggable’ genes. DGIdb can be accessed at http://dgidb.org/.]

Newswise — Researchers at Washington University School of Medicine in St. Louis have created a massive online database that matches thousands of genes linked to cancer and other diseases with drugs that target those genes. Some of the drugs are approved by the U.S. Food and Drug Administration, while others are in clinical trials or just entering the drug development pipeline.

The database was developed by identical twin brothers, Obi Griffith, PhD, and Malachi Griffith, PhD, whose interest in pairing drugs with genes is as much personal as it is scientific. Their mother died of breast cancer 17 years ago, just weeks before their high school graduation.

“We wanted to create a comprehensive database that is user-friendly, something along the lines of a Google search engine for disease genes,” explained Malachi Griffith, a research instructor in genetics. “As we move toward personalized medicine, there’s a lot of interest in knowing whether drugs can target mutated genes in particular patients or in certain diseases, like breast or lung cancer. But there hasn’t been an easy way to find that information.”

Details of the Drug Gene Interaction database are reported online Oct. 13 in Nature Methods. The database is weighted heavily toward cancer genes but also includes genes involved in Alzheimer’s disease, heart disease, diabetes and many other illnesses. The Griffiths created the database with a team of scientists at The Genome Institute at Washington University in St. Louis.

The database is easy to search and geared toward researchers and physician-scientists who want to know whether errors in disease genes – identified through genome sequencing or other methods – potentially could be targeted with existing drug therapies. Additional genes included in the database could be the focus of future drug development efforts because they belong to classes of genes that are thought to make promising drug targets.

“Developing the database was a labor of love for the Griffiths,” said senior author Richard K. Wilson, PhD, director of The Genome Institute. “There’s an amazing depth to this resource, which will be invaluable to researchers working to design better treatment options for patients.”

Wilson and his colleagues caution that the database is intended for research purposes and that it does not recommend treatments. The primary purpose of the database is to further clinical research aimed at treating diseases more effectively.

“This database gets us one step closer to that goal,” Malachi Griffith said. “It’s a really rich resource, and we’re excited to make it available to the scientific community.”

The database, which took several years to develop, is publicly available and free to use. It includes more than 14,000 drug-gene interactions involving 2,600 genes and 6,300 drugs that target those genes. Another 6,700 genes are in the database because they potentially could be targeted with future drugs.

Before now, researchers wanting to find out whether disease genes could be targeted with drugs had to search piecemeal through scientific literature, clinical trials databases or other sources of information, some of which were not publicly available or easily searchable. Further, many of the existing databases have different ways of identifying genes and drugs, a “language” barrier that can turn a definitive search into an exhaustive exercise.

The Griffith brothers are experts in bioinformatics, a field of science that integrates biology and computing and involves analyzing large amounts of data. The brothers got the idea for the drug-gene interaction database after they repeatedly were asked whether lists of genes identified through cancer genome sequencing could be targeted with existing drugs.

“It shouldn’t take a computer wizard to answer that question,” said Obi Griffith, research assistant professor of medicine. “But in reality, we often had to write special software to find out. Now, researchers can quickly and easily search for themselves.”

The new database brings together information from 15 publicly available databases in the United States, Canada, Europe and Asia. Users can enter the name of a single gene or lists of many genes to retrieve drugs targeting those genes. The search provides the names of drugs targeted to each gene and details whether the drug is an inhibitor, antibody, vaccine or another type. The search results also indicate the source of the information so users can dig deeper, if they choose.

The research is supported by a grant (U54 HG003079) from the National Human Genome Research Institute at the National Institutes of Health (NIH).

Griffith M, Griffith OL, Coffman AC, Weible JV, McMichael JF, Spies NC, Koval J, Das I, Callaway MB, Eldred JM, Miller CA, Subramanian J, Govindan R, Kumar RD, Bose R, Ding L, Walker JR, Larson DE, Dooling DJ, Smith SM, Ley TJ, Mardis ER and Wilson RK. DGIdb – Mining the druggable genome. Nature Methods. Oct. 13, 2013.

Washington University School of Medicine’s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare​.

 

October 15, 2013 Posted by | Consumer Health, Medical and Health Research News | , , , , , | Leave a comment

Advances in Cancer 2012

 

Screen-Shot-2012-12-28-at-9.34.37-AM

From the 28 December 2012 article by at The Health Care Blog

 

The 30,000 member American Society of Clinical Oncology is the world’s leading group of cancer physicians. ASCO is dedicated to curing cancer, supporting research, quality care, reducing treatment disparities and a heightened national focus on value. This month they released their annual Report on Progress Against Cancer, which highlights research, drug development and cancer care innovations.  This hundred-page document is important reading for anyone who wants to be up-to-date regarding cancer care.

Cancer related deaths in the United States are dropping, but still totaled 577,000 in 2012.  While world cancer research funding is rising, in the USA it continues to decrease, with the purchasing power of the largest funding source, the National Cancer Institute, having fallen 20% in the last decade, and a further 8% cut slated for January 1, 2013.   Development is dependent on government and private funding, as well as the willingness of more than 25,000 patients a year who volunteer to be involved in cancer trials.  All these critical supports are threatened. The Federal Clinical Trials Cooperative of the National Cancer Institute (FCLC, NCI) supports research at 3100 institutions in the USA.

The report discusses the many types of cancer which continue to be naturally resistant to cancer treatment, particularly chemotherapy.  In some cases, drugs do not penetrate a part of the body, such as the brain, in other cases even when they reach the tumor, they are not effective. ..

 

Read the entire article here

 

December 29, 2012 Posted by | health care | , , | Leave a comment

   

%d bloggers like this: