Health and Medical News and Resources

General interest items edited by Janice Flahiff

[Press release] That’s using your head: Brain regulates fat metabolism, potentially stopping disease

[Press release] That’s using your head: Brain regulates fat metabolism, potentially stopping disease
Jessica Yue poses in her lab.

Jessica Yue

 

From the University of Alberta press release By Cait Wills on January 26, 2015

Recent research into brain control of liver lipid production could cause break in obesity and diabetes treatment

Ways of keeping the heart healthy has widened, with the discovery that the brain can help fight off hardening of the arteries.

Atherosclerosis—hardening and narrowing of the arteries—can be caused by fat build up that causes plaque deposits, and is one of the main causes of cardiovascular disease. Jessica Yue, a newly recruited researcher in the Department of Physiology in the Faculty of Medicine & Dentistry, has shown a link between how the brain can regulate fat metabolism, potentially stopping the development of this disease risk factor in obesity and diabetes.

Her findings, published this month in Nature Communications, the online version of the high-impact Nature publication, outlines how the brain can use the presence of fatty acids, which are building blocks of fat molecules, to trigger the liver to reduce its own lipid production.

“We know that when there is dyslipidemia, or an abnormal amount of fat in the bloodstream, it’s dangerous for health—largely because this can lead to obesity, obesity-related disorders such as Type 2 diabetes, and atherosclerosis,” says Yue, and that “if you can find ways to lower fats in the bloodstream, it helps to lower these chances of diabetes and cardiovascular disease as a result of this atherosclerosis.”

Yue trained at the Toronto General Research Institute under Tony Lam, where she was a recipient of fellowships from the Canadian Institutes of Health Research (CIHR) and the Canadian Diabetes Association. With her associates in Toronto and with Peter Light, professor of pharmacology in the Faculty of Medicine & Dentistry, she looked at how the infusion of oleic acid, a naturally occurring monounsaturated fatty acid, in the brain “triggers” a signal from the hypothalamus to the liver to lower its fat secretion, which Yue says is a “triglyceride-rich, very-low-density lipoprotein. Light is the co-author of Yue’s paper in Nature Communications and is the director of the Alberta Diabetes Institute (ADI), where Yue is applying for membership.

“This fat complex is the kind of lipoprotein that is dangerous when its levels in the blood are elevated because it promotes atherosclerosis,” she says.

The catch, though, is that this “trigger” doesn’t work in obesity, a setting in which blood lipid levels are usually high. “In a model of diet-induced obesity, which then leads to insulin resistance and pre-diabetes, oleic acid no longer provides the fat-lowering trigger to the liver.” Yue’s findings, though, demonstrate how this faulty signal can be bypassed, unveiling potentially other ways to trigger this same function in obese patients.

This study could potentially impact how obesity and diabetes are treated, says Yue, which is the focus of her future research.

The next steps, she says, will be to look at how the brain can sense other compounds to regulate not only liver secretion of fats, but also liver glucose production, a significant contributing factor to diabetes. As a member of the Group on Molecular and Cell Biology of Lipids and with the strength of the ADI, she feels enthusiastic and inspired by her new research environment at the University of Alberta.

January 28, 2015 Posted by | Medical and Health Research News | , , , , , , , , , , , , | Leave a comment

[News article] Surprising Discovery: Skin Communicates With Liver

From the 6 December 2013 ScienceDaily article

 Researchers from the University of Southern Denmark have discovered that the skin is capable of communicating with the liver. The discovery has surprised the scientists, and they say that it may help our understanding of how skin diseases can affect the rest of the body.

Professor Susanne Mandrup and her research group in collaboration with Nils Færgeman’s research group at the Department of Biochemistry and Molecular Biology at the University of Southern Denmark was actually studying something completely different when they made the groundbreaking discovery: That the skin, which is the body’s largest organ, can “talk” to the liver.

“We have showed that the skin affects the metabolism in the liver, and that is quite a surprise,” say Susanne Mandrup and Ditte Neess, a former student in the Mandrup research group and now laboratory manager in Professor Nils Færgeman’s group.

The phenomenon was observed in the researcher’s laboratory mice. The Mandrup and Færgeman groups work with so-called knock-out mice, in which a specific fat binding protein called acyl CoA binding protein has been removed (knocked out). Some knock-out mice produced by the researchers had a strange greasy fur, and they had difficulties being weaned from their mother. In the weaning period they gained less weight and showed a failure to thrive. Analyses also showed that the mice accumulated fat in the liver at weaning.

“We believe that the leaking of water from the skin makes the mice feel cold, and that this leads to breaking down of fat in their adipose (fat) tissue. The broken down fat is then moved to the liver. The mice move energy from the tissues to the liver,” Susanne Mandrup and Ditte Neess explain.

Read the entire article here

 

December 8, 2013 Posted by | Medical and Health Research News | , , , , , , , , , | Leave a comment

Breakthrough in Regulating Fat Metabolism

From the 9 December 2011 Science Daily article

Scientists at Warwick Medical School have made an important discovery about the mechanism controlling the body’s ‘fat switch’, shedding new light on our understanding of how proteins regulate appetite control and insulin secretion.

This research, led by Professor Victor Zammit, Head of Metabolic and Vascular Health at Warwick Medical School, found that the enzyme known as ‘Carnitine palmitoyltransferase 1A’ (CPT1) has a switch which is thrown depending on the composition and curvature of its cellular membrane. This is the first time such a mechanism has been described and may possibly be unique, reflecting the importance of this protein to cellular function.

CPT1 is the key protein that regulates fatty acid oxidation in the liver and is critical for metabolism. Its activity determines whether individuals suffer from fatty liver in one extreme or ketosis in the other. Professor Zammit explained: “Knowing that the CPT1 enzyme can switch and what controls it will ultimately lead to a better understanding of why some people appear to have a speedy metabolism and others struggle to curb their appetite….

December 9, 2011 Posted by | Consumer Health, Nutrition | , , , , | Leave a comment

   

%d bloggers like this: