[Reblog] One nanoparticle, six types of medical imaging – University at Buffalo
One nanoparticle, six types of medical imaging – University at Buffalo.
Tomorrow’s doctors could use this technology to obtain a super-clear picture of patients’ organs and tissues By Charlotte Hsu
Release Date: January 20, 2015
BUFFALO, N.Y. — It’s technology so advanced that the machine capable of using it doesn’t yet exist.
Using two biocompatible parts, University at Buffalo researchers and their colleagues have designed a nanoparticle that can be detected by six medical imaging techniques:
- computed tomography (CT) scanning;
- positron emission tomography (PET) scanning;
- photoacoustic imaging;
- fluorescence imaging;
- upconversion imaging; and
- Cerenkov luminescence imaging.
In the future, patients could receive a single injection of the nanoparticles to have all six types of imaging done.
This kind of “hypermodal” imaging — if it came to fruition — would give doctors a much clearer picture of patients’ organs and tissues than a single method alone could provide. It could help medical professionals diagnose disease and identify the boundaries of tumors.
“This nanoparticle may open the door for new ‘hypermodal’ imaging systems that allow a lot of new information to be obtained using just one contrast agent,” says researcher Jonathan Lovell, PhD, UB assistant professor of biomedical engineering. “Once such systems are developed, a patient could theoretically go in for one scan with one machine instead of multiple scans with multiple machines.”
When Lovell and colleagues used the nanoparticles to examine the lymph nodes of mice, they found that CT and PET scans provided the deepest tissue penetration, while the photoacoustic imaging showed blood vessel details that the first two techniques missed.
Differences like these mean doctors can get a much clearer picture of what’s happening inside the body by merging the results of multiple modalities.