Health and Medical News and Resources

General interest items edited by Janice Flahiff

[Press release[ Detecting Sickness By Smell

From the 1 January 2014 Association for Psychological Science press release

Humans are able to smell sickness in someone whose immune system is highly active within just a few hours of exposure to a toxin, according to new research published in Psychological Science, a journal of theAssociation for Psychological Science.

According to researcher Mats Olsson of Karolinska Institutet in Sweden, there is anecdotal and scientific evidence suggesting that diseases have particular smells. People with diabetes, for example, are sometimes reported to have breath that smells like rotten apples or acetone.

Being able to detect these smells would represent a critical adaptation that would allow us to avoid potentially dangerous illnesses. Olsson wondered whether such an adaptation might exist already at an early stage of the disease.

“There may be early, possibly generic, biomarkers for illness in the form of volatile substances coming from the body,” explains Olsson.

To test this hypothesis, Olsson and his team had eight healthy people visit the laboratory to be injected with either lipopolysaccharide (LPS) — a toxin known to ramp up an immune response — or a saline solution. The volunteers wore tight t-shirts to absorb sweat over the course of 4 hours.

Importantly, participants injected with LPS did produce a noticeable immune response, as evidenced by elevated body temperatures and increased levels of a group of immune system molecules known as cytokines.

A separate group of 40 participants were instructed to smell the sweat samples. Overall, they rated t-shirts from the LPS group as having a more intense and unpleasant smell than the other t-shirts; they also rated the LPS shirt as having an unhealthier smell.

The association between immune activation and smell was accounted for, at least in part, by the level of cytokines present in the LPS-exposed blood. That is, the greater a participant’s immune response, the more unpleasant their sweat smelled.

Interestingly, in a chemical assay the researchers found no difference in the overall amount of odorous compounds between the LPS and control group. This suggests that there must have been a detectable difference in the composition of those compounds instead.

While the precise chemical compounds have yet to be identified, the fact we give off some kind of aversive signal shortly after the immune system has been activated is an important finding, the researchers argue. It grants us a better understanding of the social cues of sickness, and might also open up doors for understanding how infectious diseases can be contained.

 

Enhanced by Zemanta

January 24, 2014 Posted by | Medical and Health Research News | , , , , , , | Leave a comment

Bitter Taste Receptors Regulate Upper Respiratory Defense System

 

The time-course of an immune response begins w...

The time-course of an immune response begins with the initial pathogen encounter, (or initial vaccination) and leads to the formation and maintenance of active immunological memory. (Photo credit: Wikipedia)

 

New to me! Never would have guessed that taste would be related to immune response.
It does make sense, how else can one react to a foreign substance if one cannot sense it?

 

 

 

From the 8 October 2012 article at Science Daily

 

A new study from a team of researchers at the Perelman School of Medicine at the University of Pennsylvania, the Monell Chemical Senses Center, and the Philadelphia VA Medical Center, reveals that a person’s ability to taste certain bitter flavors is directly related to their ability to fight off upper respiratory tract infections, specifically chronic sinus infections. The new research is published in the latest edition of the Journal of Clinical Investigation….

So what exactly does drinking a cup of bitter coffee have to do with chronic sinus infections, which account for approximately 18-22 million physician visits in the U.S. each year? Recent investigations have shown that these taste receptors (T2Rs) are also found in both upper and lower human respiratory tissue, likely signaling a connection between activation of bitter tastes and the need to launch an immune response in these areas when they are exposed to potentially harmful bacteria and viruses…

..

Through the cultures, the research team demonstrated that super-tasters detect very small concentrations of the offending molecules, while non-tasters and the middle-ground individuals require 100 times more of the molecule for detection. The research team also examined the patients that the original sinus tissue samples were collected from. They found that none of the super tasters were infected with the specific type of bacteria that are detected by the T2R38 receptor, known as a gram-negative bacteria.

“Based on these findings, we believe that other bitter taste receptors in the airway perform the same “guard duty” function for early detection of attack by different types of bacteria, and we hope to translate these findings into personalized diagnostics for patients with chronic rhinosinusitis,” Cohen says.

The research team is also using the results of the current study to develop a simple “taste-test” protocol to be conducted during clinic visits. “We’re optimistic that a test of this nature will help us predict who is at risk to develop biofilms based on their ability to taste various bitter compounds. Additionally, we are looking at therapeutic outcomes, both surgical and medical, based on the taster/non-taster genetic status to determine whether knowing this status will stratify patients to either surgical or medical interventions.”

 

 

October 10, 2012 Posted by | Medical and Health Research News | , , , | Leave a comment

How Influenza Evolves – And How To Stop It From Doing So

How Influenza Evolves – And How To Stop It From Doing So.

If you become infected with the flu after getting vaccinated, your body activates an immune response that stops you from becoming ill. Although, this can trigger the virus to change into a slightly different form – one that may be more infectious.

A novel investigation from MIT reveals the mechanism responsible for this phenomenon, known as antigenic drift. The study was funded by the National Institutes of Health and the Singapore-MIT Alliance for Research and Technology and appears in the December 19 online edition of Scientific Reports, an open-access journal published by Nature.

December 21, 2011 Posted by | Medical and Health Research News, Uncategorized | , , | Leave a comment

   

%d bloggers like this: