Parts of Brain Can Switch Functions: In People Born Blind, Brain Regions That Usually Process Vision Can Tackle Language
Parts of Brain Can Switch Functions: In People Born Blind, Brain Regions That Usually Process Vision Can Tackle Language
From a March 1, 2011 Science Daily item
ScienceDaily (Mar. 1, 2011) — When your brain encounters sensory stimuli, such as the scent of your morning coffee or the sound of a honking car, that input gets shuttled to the appropriate brain region for analysis. The coffee aroma goes to the olfactory cortex, while sounds are processed in the auditory cortex.
That division of labor suggests that the brain’s structure follows a predetermined, genetic blueprint. However, evidence is mounting that brain regions can take over functions they were not genetically destined to perform. In a landmark 1996 study of people blinded early in life, neuroscientists showed that the visual cortex could participate in a nonvisual function — reading Braille.
Now, a study from MIT neuroscientists shows that in individuals born blind, parts of the visual cortex are recruited for language processing. The finding suggests that the visual cortex can dramatically change its function — from visual processing to language — and it also appears to overturn the idea that language processing can only occur in highly specialized brain regions that are genetically programmed for language tasks.
“Your brain is not a prepackaged kind of thing. It doesn’t develop along a fixed trajectory, rather, it’s a self-building toolkit. The building process is profoundly influenced by the experiences you have during your development,” says Marina Bedny, an MIT postdoctoral associate in the Department of Brain and Cognitive Sciences and lead author of the study, which appears in the Proceedings of the National Academy of Sciences the week of Feb. 28…
Related articles
- New insight into the brain’s ability to reorganize itself (Science Daily)
- How clear is our view of brain activity? (Science Daily)Imaging techniques have become an integral part of the neurosciences. Methods that enable us to look through the human skull and right into the active brain have become an important tool for research and medical diagnosis alike. However, the underlying data have to be processed in elaborate ways before a colorful image informs us about brain activity.